No. 4. - Reports on the Results of Dredging under the Supervision of Alexander Agassiz, in the Gulf of Mexico (1877-78), and in the Cariblean Sea (1878-79), by the U. S. C'ocst Survey Steamer "Blake," Lieut-Comilander C. D. Sigibeet, U. S. N., and Commander J. R. Batlettr, U. S. N., Commending.
(Published by permission of J. E. Ifilgarm, Supt. U. S. Coast and Geodetic Survey.)

XVIII.

The Stalked Crinoids of the Caribbean Sea. By P. Herbert Carpenter.
Owing to the lamented death of the late Sir Wyville Thomson, it has become my duty to complete the Report upon the Stalked Crimoids of the "Challenger" Expedition, which had been commenced by him. It had been arranged between Sir Wyville and Mr. Agassiz that the descriptions of the species obtained by the "Blake" in the C'aribbean Sea should be incorporated in the "Challenger" report, winich would thus assume the character of a Monograph of nearly all the known species of the group.* For this purpose nearly thirty plates were drawn at Edinlurgh, under Sir Wyville's superintendence, but, except for a few pencil notes upon one or two of them, he has unfortunately left no manuscript behind him of any kind. It has therefore become my dnty to make good this defieiency; but as the other calls upon my time leave me only a limited amount of leisure, I fear that some months must yet clapse before the publication of the final report.

The "Blake" dredyings have shown that the bathymetrical range of the Stalked Crimoids is not always so great as has heen often supposed. So far as my information goes, they have only been obtained fourteen times at depths exceeding 650 fathoms, their lowest limit leing the celebrated deep dredging of the "Porenpine," in 1869, where Balhycrinus

[^0]gracilis was obtained in 2435 fathoms. A young IIyocrinus (?) was dredged by the "Challenger" in 2325 fathoms, while Autedon was found at 2600 and at 2900 fathoms.

So far as I am aware, no entire Pentacrinus was obtained by the "Blake" at a greater depth than 250 fathoms,* while six of the "Challenger" species were found within that limit; though the "Porcupine" dredged P. vyville-thomsoni in 1095 fathoms in 1870 , and the "Challenger " got a fragment of P. naresianus Wy. Th. MS., in the lacific, at 1350 fathoms, this being the deepest Pentacrimus yet known. Bathycrimus, however, ranges from 1050 to 2435 fathoms, and Myocrinus from 1600 to 2325 fathoms, while Rhizocrinus lofotensis oceurs in the Norwegian fiords at 80 fathoms, and in 175 to 955 fathoms in the Caribbean Sea. It is a great pity that we have no later knowledge of the " Australian Encrinite" on a stem $6^{\prime \prime}$ long, which was obtained by Poore \dagger at a depth of 8 fathoms in King George's Sound.

It is well known that three genera of Stalked Crinoids occur in the Caribbean Sea besides the three Comatulut \ddagger; viz. Pentacrinus, Holomus, and Rinizocrinus. The last-named is represented by two species, and the first by four, viz. P. asteria Limn. sp., P. mülleri Oerst., P. decorus Wy. Th., and P. blukiein. sp. The first of these, which is the type species of the genus, seems never to have been dredged by the "Blake," except perhaps in a fragmentary state. It is mentioned, however, by Mr. Agassiz § as having been dredged off IIavana in 1878, but the individuals there referred to really belong to P. milleri; while the very variable form with a slender stem, which Mr. Agassiz and the late MLr. Pourtales have spoken of as P. mülleri, is really the P. decorus of Sir Wyville Thomson. These two species have hitherto been confused with one another, and it is only since I have been able to examine the original types of them in the Copenhagen and British Mnseums respectively, that I have succeeded in forming clear ideas about them. The relations of the Caribbean species to one another, and to the other species of the genus, are shown in the fullowing scheme.

[^1]
Genus PENTACRINUS Milerr.

It will be seen from the preceding table that the Caribbean species of Pentacrinus are equally divided between the two groups into which the eight recent species of the gemus very uaturally fall. Of the remaining types, P. wyville-thomsoni and P. maclearanus both occur in the Atlantic, the former off the Portugnese coast and the latter off Pernambuco. P. alternicirra and P. naresiazus were dredged by the "Challenger" oft the Kermadec Islands, and also to the southeast of the Philippines, the latter species also occurring at another station in the South Pacific.

Nost of the Pentacrinide obtained by the "Challenger" in the Pacific represent a new and very curioustype, which Sir Wyville Thomson designated by the name of Metacrinus in a memorandum on one of his plates. It is readily distinguished from Pentacrinus by having, not three, but from four to six radials. The secoud of these is a syzygial joint, and bears a pinnule, as do all the following joints below the radial axillary. There are numerons other minor differences between Metacrinus and P entacrinus which need not be considered here.

The examination of this large serics of Pentacrinita fully confirms the views which I have expressed elsewhere * as to the difficulty of re-

[^2]taining the genus Cainocrinus Forbes, which has recently been resuscitated by De Loriol.* The distinguished Swiss paleontologist deseribes the basals of C'ainocrinus as in contact with one another all round the calyx, so as to ferm a complete ring, while those of Pentacrinus are small and not contiguons externally, as shown in Miller's figure of P. caputmedusce (asteria Limn.) \dagger So far as the fossil species are concenned this certainly does appear to be a constant difference, but it is by $n 0$ means so in the recent ones and in Metucrinus. The unique specimen of P. maclearanns \ddagger has a closed basal ring, and so have all the cxamples of P. wywille-thomsoni that I have seen, though one or more of the basals occasionally fail to meet their fellows. But in P. naresianus there appears to be no constancy whatever in this respect. Some individuals of this species have a closed basal ring. But in others the basals are comparatively small and the radials are prolonged slightly dowuwards ever the npper stem-joints. A few exhibit both conditions, some of the basals meeting their fellows, while the rest are separated by the downward projecting radials. The sane variation, though in a less degree, oceurs in P. mülleri. But it is in P. decorus that the most remarkable variation oceurs in the size of the basals. They are sometimes smaller than those of P. asteria, and scarcely more conspicuons than the interradial ridges on the stem beneath them; or they may be large triangular knobs standing out prominently from the general plane of the calyx, and meeting one another laterally by their extended lower angles; or they may present any intermediate condition letween these two.

The following brief descriptions of the Caribbean species of Pentacrinus are not to be considered as complete specific diagnoses. These will appear, together with the synonymy, in my final report.

P. asteria Linn, sp.

Stem rohust, reaching 6 or 7 mm . in diameter, with 13-21 (usually 15-18) internodal joints. Cirrns-sockets widely oval, and occupy nearly the whole height of the notal joint. The hypozygal joints rarely modified, and then very slightly so.

Cirri reaching 70 mm . in length and composed of 50 stout joints. Lowest limit of the interarticular pores from the ninth to the twelfth node. The two outer radials mited by syzygy. The ray-divisions somewhat irregular. Primary arms of $2-6$ (distichal) joints ; secontary arms of 4-10 (palmar) joints,

[^3]usually 6-8. Tertiary arms of 6-14 joints, and occasionally another division after 8 or 10 joints more. The first two joints after cach axiliary united by syzygy, with a pinnule on the epizygral. No other syzygies on the arms.

The joints of the large pimnules on the arm-bases have their distal edge raised into a strongly marked keel, which projects forwards over the base of the next joint. This feature recurs on all the pimnules of the arms, though it is less distinct in their middle and outer portions.

Remarlis. - The above description is based on the examination which I have made of the following examples of the type:-(u.) Miller's original specimen from Nevis, now in the geological department of the British Musemm. (b.) One dry specimen and another in spirit, both in the zoölogical department of the same Mnseum. (c.) One dry specimen in the Hunterian Collection of the Royal College of Surgeons. (d.) Two dry specimens obtained by Dr. Carpenter and Sir Wyville Thomson from Mr. Damon of Weymonth.

I have not seen either of the indiviluals described by Gnettard * (Martinique) and Ellis \dagger (Barbados) ; but judging from the figures given by these authors I have little doubt that they belong to the type which is now generally known as P. asteria. The specimen from Guadelonpe in the Museum of the Geological Society of London, which is mentioned by both Miller and Miiller \ddagger as a I '. cuput-medusa, is really referable to Oersted's type P. mülleri, which is so well described in Litken's classical memoir.§ If the sixth example mentioned by Muller || be the one formerly belonging to the Natural History Society at Copenhagen, and bought in 1846 lyy the University Museum, it is also a P. mülleri.

The peculiar features of the pimmules of P. asterita afford an excellent specific distinction. They are well shown in Miller's figure, ${ }^{\boldsymbol{T}}$ which represents a pinnule some little way out on the arms. In the lowest pimmules the tubercular projection at the distal end of each joint is very marked imleed; and it is recognizalle, though of course less distinctly so, all along the arms; so that arm frugments of this species can be readily identified, which is more than can be sail for most of the Pentacrinide.

The stem also, like the arms, has a definite character of its own, which has not always been correctly described. The nodal joint, i. e. that which is pierced by the canals lodging the cirris-vessels, is united by syzegy to the joint below it, just as in P '. milleri and in all the I'entacrinide; but this lower or lypozygal joint is not grooved extemally for the reception of the thick hasal

* Mém. de l'Acad. Roy. des Sci. Paris, 1755 (published 1761), pp. 228-247, I'l. Vili., 1X.
† Phil. Trans., 1762, Tol. LII. Part I. Pp. 35i-362, Tab. XIII.
\ddagger Ahhandl. ©. Berlin. Akal., 1843, p. 185.
§ Um V'estindiens P'entacriner, med norle Bemacrkninger nm Pentaeriner og Siililier i Almindelighed. Videnskah. Meddel. fra den naturhist. Foren. i Kjubenhavn, 1864, Nr. 13-16, pl. 195-245, Tab. IV., V.
|| Loc. cit.
-I Loc. cit., 1. 51, Il. II. fig. 5.
portions of the cirri, as is markedly the case in P. decorus, and less so in P. mülleri and in most species of he genus. It has therefore often been said that the nodal joints of P. asteria ure simple and low, while those of P. mülleri are double and thick. This is ne, strictly true. The nodal joints are always single and muited by syzygy to those next below them, though the line of junction is frequently almost obliterated. The hypozygals may be modified to receive the cirrus-bases, as in P. mülleri and P. decorus, or they may not differ in external appearance from the other internolal joints, as in P. asteria and P. wyoillethomsoni. In this last species, however, the joint above the node is slightly excavatel to receive the wide basal portions of the cirri, and this character is still more marked in the genus Metucrinus.

P. mülleri Oerst.

Stem generally robnst, reaching 6 mm . in diameter, with $4-10$ (usually 6-9) internolal joints. The cirrus-sockets, which do not reach the upper erges of the notal joints, are variable in shape. Some are oval, and encroach but little on the hypozygal, while others are more circular and extend well down on to it.

Cirri reaching 50 mm . in length and composed of about 40 stont joints.
Lowest limit of the interarticular pores from the fourth to the eighth node.
The two outer radials mited by syzygy. There are usually 6 or 8 arms on each ray in the following order, 2,$1 ; 1,2$, or $2,1,1 ; 1,1,2$, the axillaries being limited to the outer arm of each successive pair. Primary arms of 2 (distichal) joints, which are mited by syzysy. Secondary arms of $2-7$ (palmar) joints, usually 3. The two following divisions are usually of 3 joints cach, but may have 5 or 6 . The first two joints after the palmar and sulsequent axillaries are mited by syzygy with a pinnule on the epizygal. No other syzygies on the arms.

The lower joints of the pinnules are somewhat prismatic, and the following ones laterally compressed, with sharp dorsal eiges.

Examples of this type were dredged by the "Blake" at the following stations*: -

1877-78. Off Havana. 175 fathoms.
1878-79. No. 193. Off Martinique. 169 fathoms.
No. 291. Off Barlados. 200 fathoms.
Remarls.- A dry example of this species was obtainet by Sir Wyville Thomson from Mr. Damon, and a spirit one was bronght home from Barharlos by Sir Rawson Rawson. Its stem is readily distingnished from that of P. asteria hy the shortness of the internoles and the modification of the hypozygal joints, which, however, is far less marken than in P. decorus. The basals generally

[^4]form a complete ring; while the branching of the arms is much more regular than in P. asteria, and there are fewer joints between the successive axillaries.

P. decorus Wrv. Thomson.

Stem slender, rarely exceeding 4 mm . in diameter, with 7-16 (usually 11 or 12) internorlal joints. The nodal joints are generally somewhat enlarged, with circular cirrus-sockets which do not nearly reach their upper edge, but extend well down ou to the hypozygal joints.

Slemler cirri composed of 25-35 joints, and reaching 28 mm . in length.
Lowest limit of the interarticular pores from the ninth to the eleventl node.
The two outer radials united by a ligramentous articulation. Ray-divisions rather irregular. Primary arms of $2-7$ (distichal) joints, of whicl the first two are united by a ligamentous articulation, the second bearing a pimule, while the last two often form a syzygy. Scoondary arms of $1-9$ (palmar) joints, which are very variable in their character. The second free brachial is usually a syzygial joint. The next syzygy from the eighth to the thirtieth brachial, after which an interval of $5-11$ joints between successive syzygies.

A pimule on the first joint after the last axillary. Pinnule joints laterally compressel, those at the base of the lower pinnules being rather broad, but the following ones are elongatel.

Examples of this type were dredged by the " Dlake" at the following sta-tions:-

1877-78. Off Havana. 175 and 177 fathoms; very abundant.
1878-79. Nos. 155 and 156. Off Montserrat. 88 fathoms.
No. 269. Off St. Vincent. 124 fathoms.
Remarlis.- The distinctness of this species from P. asterica was first recognized by Mr. Damon of Weymoutl, who procured an example of it from the seas of the onter Antilles. Its occurrence was recorled by the late Sir Wyville Thomson in a popular article on "Sea Lilies," which was published in the "Intellectual Observer" for August, 1864, but no formal description of it has since appeared. At that time Sir Wyville seems to have been unacquaintel with the description of P. mülleri by Oerstel, puldished six years previously, for he spoke of P. asteria and P. decorus as "the only two known living species" of Stalked Crinoils. But in the following year* he referred to P. mielleri as well, Liitken's memoir having appeared in the interval ; so that he evilently regarded I. decorus and P. mielleri as seprate species. Later on (1872), however, he seems to have come to the conclusion that his P. decorus was identical with Oersted's species. For, having previously said that P. asteria and P. decorus were the only two known living species of the genus, he made nearly the same statement \dagger concerning P. astcria and P. mülleri. He likewise repeated most

[^5]of his original description of P. decorus as a diagnosis of P. mülleri, with a reference unler the latter name to the specimen which he hat before him when describing P. decorus. He stated that the two onter radials of P. usteriu are united by syzygy, and further added that " the arrasement of the joints and the syaygies in the cup is the same in P^{\prime}. miellcri as in P^{\prime}. asteria, only the syagg between the second radial and the radial axillary is not su complete." This description obvionsly refers to a ligamentous articulation as distinguished from a true syzygy on the one hand, and from a muscular joint on the other ; and it is ly no means in accordance with Lütken's very positive statements * as to the presence of a syzygy between the two outer raulials of P. milleri. Neither does Sir Wyville's desctiption of the notes as occurning abont every twellth joint agree with Liitken's diagnosis, which only records $4-10$ internodal joints in P. mïlleri. As a matter of fact there are 11 or 12 internodal joints in P. decorus, and there is no syzygy at all between the two outer madials, but only a ligamentous articulation such as occurs in the majority of the Ncocrinoileca, and has often been wrongly spoken of as a syzygy, though clearly distiuguished from it ly Miller.

Had Sir Wyville lived to work ont the "Blake" collection more fully than he was able to do before his health gave way, I camot but think that he would have returned to his original views as to the distinctness of his P. decorus from Oersted's P. mülleri. The two species have really no sort of resemblance to one another, differing in all the characters of the stem, the cirri, the calyx, and the arms.

Curionsly enough, P. decorus appears to be the most common species of the genus in the Cariblean Sea. One of the "Blake" specimens is remakilly for the total absence of cirri along the whole of one face of the stem ; while at one of the nodes two more cirri are missing, so that there are only two present instead of the usual five.

P. blakei n. sp.

Stem slender, not reaching 4 mm . in diameter with $5-7$ internodal joints. Nodal joints not enlarged. The small circular cirrus-sockets do not nearly reach their upper edges, and cxtend but slightly downwards on to the hypozygals.
slender cirri composed of 25 joints and barely 20 mm . long.
Lowest limit of the interarticular pores from the sixth to the tenth node.
The two outer radials united by a ligamentons articulation. Usually only 4 arms on each ray. l'imary divisions of $1-4$ (ilistichat) joints, of which the first two are united by a ligramentous articulation. If 4 distichals are present, the second bears a pimule and the two outer ones form a syzygy. The first free brachial bears a pinnule, and the second is nsually a syzygial joint, while other syzygies occur on the arms at very irregular intervals. The proximal face

$$
\text { Loc. cit., p1. 201, } 202 .
$$

of the epizygal forms'a sharp angle which projects backwards into the retreating distal face of the hypozygal.

Examples of this species were dredged by the "Blake" at the following stations:-

1878-79. No. 157. Off Montscrrat. 120 fathoms. No. 281. Off Barbados. 200 fathoms.

Remarks. - This species is at once distinguished from P. decorus by the shortness of the internodes of the stem and the absence of any enlargement at the nodes. The calyx is closely similar to that of the variety of P. decorus with small basuls, but the arm-bases have a totally different appearance from those of that type, owing to the peculiar nature of the syzygy in the second brachials and in the sulsequent syzygial joints. The two apposed faces are not plane as is usially the case, but the hypozygal has its distal face sharply incised, while the proximal face of the epizysal is in two planes, which make a sharp angle with one another and project backwards into the hypozygal. This peculiarity is best seen in a side view of the arm, unless the joints are separated by boiling with potash or sorla. The only other species of Pentucrinus in which it occurs is the ten-armed P '. noresionus from the Western Pacific. In both cases it may be tracel in all the syzygies of the arms, so that small fragments of them are easily recognizable.

Both the recent species of Rhizocrinus occur in the Caribbean Sea. R. lofotensis was dredged in the Florida Straits by the late Mr. Pourtales, a few months before the publication of M . Sais's well-known description of it ; and l. rowsoni, first found by the "Hassler" off Barbados, was subsequently obtained by the "Blake" in 1877-78 and 1878-79.

So fur as my information goes, the distribution of these two species is as follows : -

R. lofotensis.

Dibl. 1868. Off the Sambocs. 237 fithoms. Off sand Key. 248 and 306 fithoms.
1869. Off Cojima near Hąvana. 450 fathoms ; and several times at lesser depths.
Blake. 1877-78. No. 29. Lat. $24^{\circ} 36^{\prime}$ N., Long. $84^{\circ} 5^{\prime} \mathrm{W} . \quad 9.55$ fathoms.
No. 43. Lat. $24^{\circ} 8^{\prime}$ N., Long. $82^{\circ} 51^{\prime} \mathrm{W}$. 339 fithoms.
No. 44. Lat. $25^{\circ} 33^{\prime}$ N., Long. $84^{\circ} 35^{\prime} \mathrm{W} .539$ Fathoms.
No. 56. Off Havana. Lat $22^{\circ} 9^{\prime}$ N., Long. $82^{\circ} 21^{\prime} 30^{\prime \prime}$ W. 175 fathoms.

R. rawsoni.

Hassler. 187.2. Off Sandy Bay, Barbados. 100 fathoms.
Blake. 1877-78. No. 32. Lat. $23^{\circ} 32^{\prime}$ N., Long. $85^{\circ} 5^{\prime}$ W. 95 fathoms,
Off IIavana. 175 fathoms.

Mr. Agassiz mentions in his dredging letters that he obtained a number of specimens of Rhizocrinus among the Windward Islands in 1878-79, and a few specimens in 1880 on the line from Cape Hatteras to St. George's Shoal ; but not having seen any of them, I can say nothing as to the species which they represent.

In 1860 two examples of this genus were obtained by the "Porcnpine" off Cape Clear, in 862 fathoms (No. 42), and were referred at the time to R. lofotensis. On comparing them, however, with some specimens of R. rousoni from off Havana, I find that they really belong to this type, as I had always suspected since reading Pourtales's description of it.* li. rausoni was also dredged by the "Challenger" in 900 fathoms among the Azores. It is readily distinguished from R. lofotensis by its more robust appearance and elongated calyx, which is nearly always constricted at the basiradial sutare, instead of widening gradually upwards, as does that of R. lofotensis. The first radials are much shorter relatively to their width than in R. lofotensis, and the epizygal of the syzygial first brachial is not markedly marrower than the hypozygal as in the latter species. The greater part of the cup is formed by the clongated basals. In the Norwegian variety of R. lofotensis these fuse so very completely that no sutures are usually visible on the exterior of the calyx. This led Sars \dagger and Ludwig \ddagger to suggest that the basals of the young lihizocrinus undergo metamorphosis into a "rosette," as in most Comutule, thongh this view is not supported by the observations of Pourtales \S and myself; $\|$ and the fact that the so-called "enlarged upper stem-joint" of R. lofotensis really consists of the anchylosed basals as originally stated by Mr. Pourtales © for the Caribbean variety is now generally recognized.** The difference in the relative proportions of the two species is seen in the following table, which also shows the sizes of the stem-joints in the examples of R. rausoni that were dredged by the "Blake," "Challenger," and "Porcupine" respectively, and in Sars's largest specimens of R. lofotensis.

[^6]| Expedition. | | Base. | | Length | Stem-Joints. | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Depth. | Height. | Width. | of Stem. | No. | | Width. |
| Blake | $\begin{aligned} & \text { fath. } \\ & 175 \end{aligned}$ | $\operatorname{mm}_{5.5}$ | $\begin{aligned} & \text { mu. } \\ & 2.50 \end{aligned}$ | $\begin{aligned} & \mathrm{mm} . \\ & 180 \end{aligned}$ | 68 | $\operatorname{mm.}_{3.50}$ | $\operatorname{mmx}_{2.25}$ |
| Challenger | 900 | 5.0 | 2.00 | 150 | 53 | 3.00 | 2.00 |
| Porcupine | 862 | 3.0 | 1.75 | 50 | 30 | 2.25 | 1.25 |
| G. O. Sars | 300 | 2.0 | 1.50 | 70 | 67 | 1.50 | 0.50 |

R. lofotensis (maximum.)
N. B. - Pourtales described his largest specimen of R. lofotensis as having a stem nearly 130 mm . long anil composed of 59 joints, the length of which averages three times their diameter.

The stem-joints of R. razosoni are relatively shorter and thicker than those of R. lofotensis, in which the length is three times the width. In absolute size, as well as in the proportions of the basals and of the stempoints, the "Porcupine" examples of this type are the ones which approach l. lofotensis most nearly. They are smaller than those from the Azores, which are themselves smaller than the Caribbean specimens, a fact which is doubtless due to variations of temperature. The difference in size between the largest specimens of $l l$. Infotensis found by Sars and Pourtalès respectively is likewise probably the result of the difference between the temperature of the Gulf Stream in the Florida Straits and that of the Northeast Atlantic. It is noteworthy that an elongated calyx resembling that of R. rausoni is chiefly found in those individuals of R. Infotensis which have the arms best developed ; * so that this species probably represents a further stage in the degradation of the Apiocrinite type than is reached by R. rawsoni. The occurrence of the latter form in the Eastern Atlantic is of extreme interest, owing to its remarkalle resemblance to Bourgucticrinus londinensis. This type was named hy Forbes from some isolated stem-joints in the London clay; but a well-preserved calys has since been discovered, which is now preserved in the Natural Iistory Museum at South Kensington.

Several species closely allied to 73. Iondinensis, which oceur in the Tertiary deposits of France and Italy, are referred by Zittel \dagger and other palrontologists to the genus Conocrinus D'Orbigny ; c. g. C. pyriformis دlünst. sp., C. thorenti D'Arch. sp., C. cormutus Schafh. sp., C. suessi

[^7]Munier-Chalmas sp., and Ceguenzai Menegh. That they are congeneric with Forbes's species and with lhizocrinus I have not the smallest doubt; and the question therefore arises whether Conocrimus D'Orbigny is to take precedence over Rhizocrinus Sars.

On this snbject Prof. Zittel remarks, "Nach den Regeln der Prioritiit gebiihrt dem Namen Conocrinus D'Orb. die Prioritiit, wenn gleich die Gattungsdiagnose D'Orbigny's unvollständig und theilwise unrichtig ist."

The type on which D'Orbigny founded Conocrinus was the Bourgueticrinus thorenti of D'Archiac, but his definition of it was so ineomplete and so incorrect that, even supposing Sars had not defined Lhhizocrinus as claborately as he did, I should not admit Conocrinus as a valid grenus until it had been re-defined. Liitken * remarked, in 1864, that its distinctness from Bourgueticrimus was still a matter of uneertainty. D'Orbigny \dagger spoke of it as "Genre voisin des Bourguticrinus, mais sans pieces basales comme les E'ugeniacrims" ; and again, "C'est un Bourgueticrinus ayant la tige comprimée, mais avec une senle séric de picees hasales." If he considered it as near Bouryueticrinus and as resembling Eugeniacrinus, why did he omit it altogether from the tabular scheme of the Aprocrinidue, which appears on page '2 of his " Histoire Naturelle des Crinoildes Vivans et Fossiles," and contains the names of both those genera? It would seem from his reference to the alisence of any tertiary species of Bourgueticrinus on page 96 that he included them all in Comocrinus, which would belong to a different family altogrther. This shows how he had misunderstood its real character and affinities, and as a matter of fact his deseription of it as having no basals is entirely incorrect. They are visible enough in D'Archiac's figmres of B. thorenti (the type-species of Comocrinus), and in other elosely allied species. Lastly, the remark that Conocrinus is a Bumrgueticrinus with a contpressed stem, is worthless as a generic description, when the latter genus itself is deseribed as having a round or compressed stem.

The differences between the two types are of an entirely different character from those mentioned by D'Orbigny, which would be absolntely unintelligible in the absence of figures or of original specimens. I feel it only right, therefore, to ignore Conocrinus altogether, and to adopt Sars's well-known genus lihizocrinus.

The differences between Apiocrinus and Millericrimes on the one hand, and Bourgueticrinus and Phizocrinus on the other, have led Mons. de

[^8]Loriol * to establish a new family Bourgueticrinida, which comprises the two genera just mentioned, together with Buthyerimus and Mesoerimus, a genus recently proposed by myself. De Loriol also includes in it Ilycrinus of Danielssen and Koren ; but this genns is certainly identical with Bathycrimes, which was founded by Sir Wyville Thomson \dagger on an immature specimen dredged by the "Poreupine" in 2435 fathoms, two hundred miles south of Cape Clear. His description \ddagger of the larger species, B. aldrichianus, from the Sonthern Sea, seems not to have reached the Norwegian naturalists before the publication of their genus Ilycrimus, which was founded on much more developed individuals than that dredged by the " Poreupine."

Of the four genera included in De Loriol's new family, Bourgueticrimus and Rhizocrinus are the two most elosely allied. The differences between them are greater than was supposed by Sars, owing to his mistake about the basals of the latter type, and may be summarized as follows : -
Bourgueticrinus. Lower stem-joints not longer than wide; while one or two at the top of the stem are much longer than those below, and help to form the "summit." Basals usually wider than high.
Rhizocrinus. Lower stem-joints usnally much elongated, two or three times as long as wide. Those just below the calyx are the shortest, often being mere disks. Basals nsually much longer than wide, occupying the greater part of the length of the calyx, which expands somewhat from below upwards.
The last type to be mentioned is the remarkable genus Holopus, about which much information will be found in a commmication § by Sir Wyville Thomson to the Royal Society of Edinburgh, in 1877. Since the publication of this paper Sir Wyville made a horizontal section of the cup about two thirds of its height from the base. I was never fortunate enough to learn his own views on the suljeet, but the appearance of the section leads me to believe that the lower part of the cup is formed by basal plates which project inwards and upwards above the level of the onter edges of the radials, just as in Pentacrinus.\|

[^9]Sir Wyville left it an open question whether the articular facets on the upper edge of the calyx-tube belong to the first or to the second radials. I believe myself that they are of the former nature, partly on account of their great resemblance to those of certain fossil species, and partly because the axillaries appear to me to be syzygial or double joints.

Sir Wyville has pointed out that the cup exhibits a very marked division into bivium and trivium ; for " one side of the border is much thicker and considerably higher than the other side, and the three arms articulated to it are much larger than those articulated to the opposite side." In fact, the three facets of the trivium are themselves mequal, the centre one being both longer and wider than the other two, which are themselves longer and a little wider than the two facets of the livium. This want of symmetry in the calyx is very remarkable, as it is precisely similar to that described by De Loriol * in Eugeniacrinus mayalis, from the Leptena bed (Middle to Upper Lias) of Calvados in Normandy. The calyx of this species, formed by the five contignons radials, tapers away downwards to a truncated extremity, which De Loriol supposes to have rested on the top stem-joint, basals being apparently absont.
lut although Eugeniacrinus mayalis probably had a short stem, it is certainly very closely allied to Holopus. The calyx as well as the second and third radials are covered with scattered granules of variable size, just as in Holopus. The two outer radials were united by a muscular joint; but in a closely allied species, E. deslongchampsi, which is more symmetrical and less coarsely gramular than E. mayalis, they are united by syzygy, just as I believe to be the case in IIolopus. Together with the calyces and separate radials of these two species, the Lepteria bed contains a large number of isolated arm joints, \dagger some of which are extraordinarily like those forming the lower part of a Hulopus arm.

Oue reason why I suspect the axillaries of Holopus to be syzygial joints is as follows. In one individual the axillaries on the two rays of the bivium are distinctly in two parts, though the sutural lines do not extend right across them. On the three axillaries of the trivium, however, uo sutural lines are visible at all ; though they are just traceable in another specimen, and are fairly distinct in a young one 8 mm . high.

The condition of the very young individual which was obtained by the "Blake" at Station 22, and was figured in Volume V. No. 9 of the

[^10]"Bulletins," seems to point to the same conclusion ; for the lower ring of pentagonal (or rather hexagonal) plates must surely be the second radials, and the triangular ones above them the axillaries.

A fragment of a living Holopus was dredged by the "Blake" in 120 fathoms, off Montserrat (No. 157). It was preserved in spirit and sent over to Sir Wyville Thomson, who asked me to cut some sections of the arms for him. The condition of the dried individuals hitherto known had led him to suspect "that the tissues are very imperfectly differentiated, almost protoplasmic. When an arm is put into boiling water it falls to pieces at once, the joints simply coming asunder, and showing no trace of muscular or other organic comnection except the axial cords of the joints, which sometimes keep two joints hanging in connection for a little." The spirit specimen, however, told a different tale altogether, and the sections which I have made from it show that the soft parts of Hulopus differ but little from those of any ordinary Crinoid. The arm-joints are articulated by means of muscles and ligaments in the usual way. The two large arm-canals, the coliac and the subtentacular, are separated by a smaller genital canal containing the genital cord. This has exactly the same structure as that of any common Antedon, and the ovaries which it bears at intervals are much more like those of Anteclon eschrichti in their histological structure than are those of many Comatulue. The ambulacral groore is quite narrow in proportion to the breadth of the arm, and the ovaries extend but a very little way into the pimnules. The branches which leave the axial cords of the arms to supply the pinnules take a somewhat singular course. For they are thrown into loops in a dorsoventral direction, which are small at first, immediately bencath the arm-canals, but become much more marked at the bases of the pinnules, within which the cords still retain an undulating course.

Above the water-vessel is the usual darkly colored ambulacral epithelium, which is doubtless separated from the water-vessel by the ambulacral nerve and bloodvessel, though I have not been able to see them clearly. There are no large and imbricated reniform plates at the sites of the ambulacra, such as occur in Rhizocrinus, Buthycrinus, and Myocrimus. But the tentacles are umsually large, and taper rapidly from a broad base; while the lower thick part of the shaft of each tentacle is protected by a well-developed calcareous retienlation, above which are groups of more or less closely united spicules.

List of Additional Stations of Stalked Crinoids collected by the "Blake." I'repared by J. Walter Fewfies.

RHIZOCRINUS.

R. lofotensis S.irs.

* Blake, 1877-78. No. 35. Lat. $23^{\circ} 54^{\prime} 46^{\prime \prime}$ N. \dagger Loug. $88^{\circ} 58^{\prime}$ W. 804 fath.
" 1878-79. No. 238. Off Grenadines 127 "
" " No. 248. Crenarla 161 "
" " No. 259. Grenada 159 "
" " No. 27.4. Barbados 209 "
" 1880. No. 306. Lat. $41^{\circ} 32^{\prime} 50^{\prime \prime}$ N. Long. $65^{\circ} 55^{\prime}$ W. 524 "
\ddagger U. S. Fish Com. 1882. No. 1124. S. S. E. Off Nintucket . . 640 "

R. rawsoni Pourtalès.

Blake, 1878-79. No. 155. Montserrat 88 fathoms.
" " No. I66. Guadeloupe 150 "
" " No. 177. Dominica 118 "
" " No. 21 I. Martinique 357 "
" " No. 273. Barbarlos 103 "
" " No. 277. Barbados 106 "
" " No. 290. Barlarlos 73 "
" " No. 296. Barbados 84 "
" " No. 297. Barbados 123 "
Capt. E. Cole. Saba Bank 200 "

PENTACRINUS.

P. asteria Linn.

* Blake, 1878-79. No. 157. Montserrat 120 fathoms.
Dr. Schramm.
Guadeloupe Depth ?

[^11]
P. mülleri Oersted.

[^0]: * Itycrinus corpentrri of the Norwecrian Nortl Atlantie Experlition (Nyt Mag. for Naturvid., Bd. XXHI ., 1s77) is undonlstedly a Buthorerinus, thongly I do not think it is identical with B. grereritis of the first "Porenpine" Expentition (1869). The "Yega" dredged some Staked (rinoids ofl' the Siberian coast, ant also a large Metacrimes in the North Pacifie, but no deseriptions of them have yet been published.

 VOL. X. - No. 4.

[^1]: * Specimens were obtained in as little as 42 fathoms, and stem fragments down to 470 fithoms.
 \dagger Amm. and Mas. Nat. Hist. (1862), Vol. 1X. p. 486.
 \ddagger Anteclon, Actinminetre, and Atclecrinus. Sce Bull. Mns. Comp. Zoül., Vol. IX. No. 4.
 § Bull. Mus. Comp. Zoil., Vol. V. No. 6, p. 56.

[^2]: * Journ. Linn. Soc., Vol. XV. p. 210.

[^3]: * Monographic des C'rinoildes fossiles de la Suisse, (Geneva, 1877-i9,) p. 111.
 \dagger I Natural History of the (rinoidea, (Bristul, 1821,) p. 51, l'l. II. fig. 9.
 \ddagger The Atlautic, Vol. II. p. 124, fig. 31.

[^4]: * The romplete list of localities for the different Crinoids Arelged by the "Blake" will doubtless be drawn up by Mr. Agassiz and his assistants. I camot, of course, do more than record the localities of the selected specimens which have been sent to Europe for study.

[^5]: * Phil. Trans., Vol. CLV. p. 542.
 \dagger On the Crinoils of the "Porcupine" Deep-Sea Dredging Expelition, Iroc. Roy. Soc. Edinb., Vol. VII. pp. 765-767; and "The Depths of the Sca," 1p. 434-442. See also "The Atlantic," Vol. 1I. p. 126.

[^6]: * Zoölogical Results of the " Hassler " Expedition, Ill. Cat. Mus. Comp. Zoöl., No. VIII. 11. 27-31.
 \dagger Mémoires pour servir ì la Connaissance des Crinoildes Vivants, p. 12.
 \ddagger Morphologische Studien an Echinolermen, Band I. IP. 120-122.
 § Loc. cit., p. 29.
 || On some Points in the Anatomy of Pentacrinus and Rhizocrinus. Journ. Anat. and Phys., Vol. XII. pp. 48-53.

 IT Contributions to the Fauna of the Gulf Stream at great Depths. Bull. Mus. Comp. Zö̈l., Vol. I. No. 7, pp. 12S-130.
 ** Zittel's Handbuch der Palaeontologic. Palaeozologie, Band I. p. 393.

[^7]: * Sars, Crinoüles Vivants, p. 4.
 \dagger Palaeontologie, p. 392. See also Meneghini, "I Crinoidi Terziarii," Atti d. Soc. Tosc., Vol.II. pp. 11-17. Schluter, "Ueber einige Astylide Crinorden," Zeitsch. d. deutsch geol. Gesellsch., 1878, pr. 52-55. De Loriol, "Crinoïdes fossiles de la Suisse," p. 190 ; and Paléontologie Franęaise, "Terrain Jurassique," Tom. XI. (1882), P. 65.

[^8]: * Loc. cit., p. 212.
 \dagger Prodrome de laléontologie Stratigraphique Universelle, 1850, Tom. II. p 332.

[^9]: * Paléont. Franȩ., loc. cit., p. 63.
 \dagger The Depths of the Sea, pp. 450-454, fig. 73 ; and Proc. Roy. Soc. Edinb., Vol. YII. 1f. $772,773$.
 \ddagger "Notice of new Living Crinoids belonging to the Apiocrinidæ," Journ. Linn. Soe. Zoölogy, Vol. XIII. pp. 48-51.
 \S "On the Structure and Relations of the Genus Holopus," Proc. Roy. Soc. Edinb., Vol. IX. p. 409.
 $\|$ Schliiter (loc. cit., p. 51) is inclined to believe that basals are present in Cyathidium spilcccense. Like Sir Wyville Thomson, I am unable to differentiate Cyathidium from Holopus.

 VOL. X. - No. 4.

[^10]: * Palcontologie Française. Terrain Jurassique, Tom. XI. p. 78, Pl. VIII. figs. 1-5.
 \dagger Loc. cit., I'l. XI.

[^11]: * The identifications on lahels in bottle with specimens, marked in this list with an asterisk, are in Mr. Ponrtales's handwriting.
 \dagger In list of Stations, Bull. Mus. Comp. Zoiil., VI. 1, p. 9, Lat. reads $23^{\circ} 52^{\prime}$.
 \ddagger Verrill, American Journal, November, 1882.

